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Abstract. We present a method of obtaining exact isolated solutions for the class of quantum 
optical systems without the use of a rotating wave approximation (RWA).  The method 
generalises the results known from the literature to the case of multilevel atomic systems. 
The analytical properties of the solutions in the Bargmann representation for the radiation 
field mode are discussed. The analogues of these solutions for atomic systems interacting 
with an extemal field are constructed. 

1. Introduction 

Optical non-integrable systems in which the rotating wave approximation ( RWA) is not 
employed have enjoyed a growing popularity in recent years. The statement above 
relates especially to the simplest model of the two-level atom interacting with one 
mode of the electromagnetic field (i.e. a spin-4 coupled to a harmonic oscillator). This 
fact has manifold reasons. Firstly the recent progress in the Rydberg atoms’ technique 
allows for the experimental studies of interaction of atoms with a single cavity mode 
(Haroche 1983). Due to large values of Rydberg atoms’ dipole moments and a cavity 
mode wavelength the non-RwA effects might be transparent even in the case of the 
resonant interaction. Secondly, in the semiclassical version of the model, chaotic 
behaviour was discovered (Zaslavsky 1981, Milonni et al 1983). This stimulated the 
interest in the fully quantised version of the model as a simple candidate for the 
‘quantum chaotic’ system (Graham and Hohnerbach 1984, 1985). Furthermore the 
last problem is connected with the question of how the ‘quantum non-integrability’ 
influences the effect of collapses and revivals investigated by Eberly et a1 (1980, see 
also Hioe 1983 and references quoted therein). Finally the two-level atom model has 
its counterpart in condensed matter physics which makes it interesting from a different 
physical point of view (see, e.g., Reik et al 1982). 

The studies of the Jahn-Teller effect led Judd to discover a class of exact isolated 
solutions (eigenstates) of the model (Judd 1979). For certain relations between the 
parameters of the model one can find the analytic form of the two eigenvectors of the 
Hamiltonian with the corresponding energy. The most complete and simple description 
of these solutions, also for the optical applications, has been given by Reik et a1 (1982). 
They observed that the isolated solutions can easily be obtained by using the Neumann 
series expansion for the eigenvectors in the Bargmann representation for the boson 
operators. 

0305-4470/86/020305 + 14S02.50 @ 1986 The Institute of Physics 305 



306 M Kus and M Lewenstein 

The aim of our paper is to present some generalisations of the solutions found by 
Judd and rederived by Reik et al. Section 2 of our paper contains the brief discussion 
of the known solutions of the two-level atom. In the following three sections we present 
the new results. In particular we generalise these solutions to the cases of multilevel 
atomic systems ( 5  3) and  of autoionising systems (§ 4). Finally in § 5 we discuss 
analogous solutions to the problem of the interaction of a two-level system with the 
external field. 

2. Two-level system 

The well known Hamiltonian of the two-level system interacting with the single 
radiation mode has the form: 

H = a ' a  + w a 3  + A ( a+ + a- ) ( u t  + a )  (1) 

where at and a are the photon creation and annihilation operators, 2w is the atomic 
level separation frequency, A atom-field coupling constant and a3, a+, a- are the usual 
spin-; operators with the following commutation relations: 

[a,, a'] = It cT*, [a+, a-] = 2a3. 

The frequency (energy) units are chosen in such a way that the photon frequency 
equals 1. 

is diagonal, the stationary Schrodinger 
equations for the two-component wavefunction ( $;) take the following form: 

In the representation in which = a+ t 

In writing the equations (2) we used the Bargmann representation for the bosonic 
operators a +  + z, a + d/dz. The Hilbert-Bargmann space consists of all the analytic 
functions f (  z)  for which 

In the following analysis we will follow Schweber (1967). Substituting 

[ = z + A ,  h ( z )  = exp( -%)v( t ) ,  E = E + A *  ( 5 )  
we obtain a second-order equation 

[ ( [ - ?A)  d2q/d[2+ [2A(& - l ) +  ( 1  - 2 ~  +4A')[ -2At2] d p / d t  

+ [ E '  - W' -4A2& + 2A~[]q  = 0.  (6) 
Assuming the following series expansion for ~ ( 5 ) :  
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we are led to the tridiagonal recurrence for the coefficients 

b ,=(n -E)c ,  

The recurrence (8) has two linearly independent solutions b!,'), by' with the following 
limit behaviour: 

Because we are looking for the analytic (in the whole plane) solutions of (6) we are 
interested in the solution b t ) .  The general solution of (8) is of course a linear 
combination of the solutions 6"' and bL2): 

b, = A I  b'," + A2by' .  (10)  

bo = A,bb"+ A2br '  c1 = A l b r ' ) + A 2 b y ) .  ( 1 1 )  

The values of A,  and A2 are determined by the initial values bo and b,  

The requirement A, = 0 gives: 

b\') b, - 1 ( 2 A 2 - ~ + w 2 ) .  
b! '-b,  2 A  E 

On the other hand the proper limit behaviour (i.e. limn+m ( b n + l / b n )  = O )  is possessed 
by the continued fraction solution of (8) 

where 

ff =-- 

1 
P n  =- n + l '  

Combining the equations ( 1 2 )  and ( 1 3 )  we obtain a transcendental equation for the 
energy E. This is the final formula obtained by Schweber. 

By the elementary transformation of continued fractions this can be brought to the 
form 

(14)  

where 

A n ( ~ ) = 4 n A 2 ( n - 1 - e ) ( n - ~ )  

B,( E )  = ( n - E ) (  n - E + 4A ') - U' ,  
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It is easy to see that A,(n) = 0, so E = n is the root of (14) provided the finite continued 
fraction 

Bo(n)-  
A,(n)  

A2(n) R I n \ -  

is equal to zero. This states a certain relation between w and A (compatibility condition). 
The solutions corresponding to these energies were originally found by Judd (1979) 

in a different context and were analysed by Reik et a l  (1982), who used a Neumann 
series expansion for the eigenfunctions. In this language the termination of the 
Neumann series determines the solutions and the compatibility conditions. 

In fact probably the simplest method for obtaining the exact isolated solutions is 
based on the use of a very simple and natural ansatz. Because the energies of these 
solutions are the same as for the exactly soluble model with w = O  we look for the 
eigenstates formed by the finite number of excitations of the shifted photon vacuum 
(ground state for w = 0): 

where P,, and are the polynomials in z :  

P"(Z) = p n z n + p n ~ , z " - ' + .  . .+PO (17)  

Substituting (16)-(18) into (2) and comparing the coefficients of z"+' and Z" in the 
first equation we obtain 

A P n  = APn 

(which is identically fulfilled) and 

( n  - A 2 ) p n  = EPn (19) 
which determines the energy. 

For the remaining 2n + 1 coefficients P k  (OS k s  n) and q k  ( O S  k S n - 1) we obtain 
2 n + l  linear equations comparing the corresponding powers of z on both sides of 
the equations (2). Obviously the non-trivial solution exists when the determinant 
vanishes, which gives the compatibility condition. In particular the first two compatibil- 
ity conditions (n = 1,2)  have the explicit form 

w 2 +  4A2 = 1 for n = 1, (20) 
w 4 +  ( 12A2 - 5)~'s XA4-32A2+ 4 = 0 (21) for n = 2 .  

For the given n the compatibility condition has the form of the equation of n th  degree 
in A' ( a 2 ) .  Whenever A ' >  0 and w 2  > 0 fulfil this equation we are able to construct 
two independent eigenfunctions of the Hamiltonian (1). The second solution is 
obtained from (16) by the substitution CLi(z) = (L2(-z) ,  (Lh(z) = CL1(-z). 

The number of pairs A' and w 2  fulfilling the compatibility conditions increases with 
n. This can be understood if we rewrite the equations (2) in the form of an  eigenproblem 
with respect to w 2 :  

L(L1 = W2*I (22) 
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where 

L = [ ( z - A )  d/dz - E - Az][ ( z + A )  d /dz - E + Az]. (23) 

(d/dz-A)"+l=O (24) 

It can be easily proven that if E = n + A 2  and 

then (d/dz - A)"L+, = 0, i.e. L has an invariant n-dimensional subspace. In this 
language the compatibility condition is interpreted as a secular equation determining 
the value of w 2 .  Obviously the operator L is not Hermitian, it can be however proved 
that all w 2  must be real. 

Let us now focus our attention on the analytic properties of the solutions of the 
equations (2). From the construction our solutions (16) are certainly analytic in the 
whole plane. The equations (2) as a set of two first-order linear equations have two 
imdependent solutions. The second solution may be analytic or not. We shall check 
under which condition both solutions are analytic. 

The set (2) has two singular points z = & A .  We perform the Frobenius analysis in 
the point z = A, i.e. we look for the solutions in the form $, = (z  - A ) P  ck( z - A)". 
Equating the coefficients of the same powers of z - A  we arrive at the indicia1 equation 

P ( E  + ~ ' - p )  = 0. (25) 

Therefore both linearly independent solutions of (2)  are analytic in the neighbourhood 
of z = A when p is a non-negative integer, i.e. when the energy is equal to n - A 2  
( n  = 0, 1 ,2 ,  . . .) which is exactly the value for the isolated exact solutions. The same 
conditions can be obtained by analysing the analyticity in z = -A. In fact the solution 
for E = n - A 2  has its analytic counterpart which follows immediately from the symmetry 
considerations. Namely, as we mentioned, if ($;it;) is a solution then ($$I:;) is also 
a solution. This symmetry (parity) operation applied to (16) gives a linearly indepen- 
dent, analytic solutions of (2). The energy level E = n - A 2  is thus doubly degenerated?. 

As a conclusion we obtain that the requirement of analyticity of both solutions in 
one of the singular points gives the energy for which the exact solution of (2) can be 
found. 

The existence of exact isolated solutions does not of course allow for the general 
solution of the eigenvalue problem (2). Nevertheless, these solutions can serve as a 
test for different perturbation expansions and numerical procedures. Moreover first- 
order perturbation expansion around them can be obtained explicitly. 

If one looks at the energy levels of (2) for example as a function of A'  certain 
regularities of the spectrum can be found. For instance the nth energy level with a 
given parity crosses n times the line E = n - A '  if U is not too large. Increasing w the 
number of such crossings decreases, but nevertheless remains large for large n and 
the nth energy level oscillates around n - A 2 .  The exact isolated solution does confine 
the function E , ( A 2 ) .  One can obtain a nice interpolation formula for & ( A 2 )  using the 
exact crossings of basic lines for A '= / \ :  (where A i  is determined by the proper 
compatibility condition, e.g. (20) or (21)), as well as the exact values of the derivatives 
of & ( A 2 )  at those points. Such an interpolation formula works better for large n, since 
we have more exact isolated solutions then. Moreover the confinement of the energy 
levels to the basic lines ( E  = n - A 2 )  allows us to attach a definite quantum number to 

t The ansatz (16) does not have a definite parity connected with the above symmetry. Therefore the second 
solution with the same energy exists. 
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each energy level. In another words we may expect that the quantum KAM theorem 
(Hose and Taylor 1983) should be applicable in this case and the candidate for the 
integrable Hamiltonian Ho which approximates (1) is easy to guess: one should take 
the Hamiltonian (1 1 with w equal to zero. The guess is based on the observation that 
for w = 0 the energy levels are doubly degenerated and equal to & ( A  *) = n - A’. In 
fact Graham and Hohnerbach (1985) have shown the numerical evidence for the fact 
that the assumptions of the QKAM theorem are fulfilled for H and Ho. 

We conclude that the relatively small difference between the non-integrable system 
(1) and the integrable system with w = O  is due  to the existence of the isolated exact 
solutions. 

In the following sections we shall show that exact isolated solutions can also be 
found for more complicated systems. We shall use the method based on the three 
essential observations drawn from the presented analysis of the two-level system: 

(i) the exact solutions are in fact obtained using a very simple ansatz, namely the 
eigenstate is a linear combination of the finite excitations of the shifted photon vacuum; 

(ii) the existence of the above solutions may be attributed to the existence of the 
finite dimensional invariant subspace of some (in general non-Hermitian) operator; 

(iii) the eigenvalues of these solutions are such that the necessary condition of 
analyticity of all the linearly independent solutions of the Bargmann representation 
equations in a singular point is fulfilled. 

3. Multi-level systems 

The Hamiltonian of the N-level system interacting with the single mode of the 
electromagnetic field has the form 

H = A + i ( a T + a )  + uta  (26) 
h and i are here N x N Hermitian matrices; 
is a matrix of dipole transition elements. In the Bargmann representation the eigenvec- 
tors of (26) can be written as N component, z dependent vectors $ ( z ) ,  fulfilling the 
Schrodinger equation: 

is a free atomic Hamiltonian and 

[ z  d / d z + i ( z + d / d z ) + h ] $ ( z ) = E $ ( z ) .  (27) 
It is worth stressing that for N > 2 the method of continued fractions is no longer 
suitable for solving (27). 

If we use the representation in which i is diagonal and assume that all eigenvalues 
of i are different, equation (27) can be written in the form 

Obviously in general the system (28) has N independent solutions. The required 
solution should be analytic in the whole plane, in particular in all singular points of 
the equation (28) z = -At .  Assuming that $ behaves like ( z +  A , ) P  in the vicinity of 
z = -A ,  we are led to the following indicia1 equation: 

(29) p N - l ( p  - E - A f + = 0. 

If 

E = n + a,, - A f for n =0,  1 , 2 , .  . . 
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then all N independent solutions are analytic in z = - A i  In this case we may expect 
the existence of simple exact solutions of (28). Indeed we find this solution using the 
ansatz: 

+( z )  = e-"( A,z" + A , - l z " - l  + . . . + A,)  (30)  

where Ak are N-dimensional columns. The ansatz (30)  leads to the following set of 
equations 

( ~ - A ) A ,  = O  ( 3 1 a )  

(I - A ) A n - ,  = ( E  + A i  - h - n)A, - ,  (31b) 

( E  - A  + A i ) ~ ~  - i ~ ,  = 0. 

Equations (31)  can be solved as follows: 

proportional to the ith eigenvector of the finite dimensional matrix x; 
only if 

( 3 1 d )  

( i )  A has to be equal to the one of the eigenvalues of I, say A = A , .  A ,  is then 

(ii) since the matrix (i - A )  has no inverse, equation (13b) can be solved if and 

( E  - a,, - n + A f )  = 0, (32) 

this condition, determining the energy E, is equivalent to the requirement of the 
analyticity of all N independent solutions of (28)  in the vicinity of z = - A t ;  

(iii) equation (31 b )  determines A , - ,  non-uniquely. A,-l  may contain an arbitrary 
contribution parallel to A,. This contribution is, however, uniquely determined from 
(31c)  in the case k =  1; 

(iv) analogously A n - s - ,  is determined from (31c)  for k = s up to the projection 
onto A,. The latter is determined also from (31c)  but for k = s + 1 ;  

(v) finally equation ( 3 1 d )  plays a double role: it determines the projection of A .  
onto A ,  and states N - 1 compatibility conditions. 

For n = 0 the compatibility condition requires that h and 1 have a common 
eigenvector. Here we present a non-trivial result for n = 1 

E = 1 + Cl,, - A f (33)  

and the compatibility condition reads 

In order to get more insight into the obtained result we shall analyse in the remainder 
of this section aqexample of a three-level system. We shall assume the particular form 
of the matrices n and 1 
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The energy level of the free atom are ol, 0, w2, while the dipole transition matrix 
elements A I ,  A2.  Direct transitions from the lowest to the highest atomic state is 
forbidden. In the first step we diagonalised k 

where A. = (A: + A:)”2. In this representation 

-RI -A  

where 

(37) 

Equation ( 2 8 )  has now three singular points z = 0, +Ao.  For N = 1 the corresponding 
energies are 

E = 1 +RI - A; (39a) 

E = 1 + R 2  analyticity in z = 0. (39b) 

analyticity in z = *Ao, 

We should be therefore be able to find two doubly degenerated solutions in the case 
(39a). This follows independently from the fact that if 

is a solution, then 

is also the solution. In fact we find that the ansatz (30) with n = 1, A = *Ao works 
provided 

and the two compatibility conditions hold: 

(1 ++RI - 2 A ;  - A2 -Cl: -R2)h/Ao= 0 

(Rl/2Ao) (4A + 2A2 + R: - 1 ) + A2/ A0 = 0. 
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The equations (40) have non-trivial solutions (for ( f l l / ( l  +f l l ) ) ( l  -fl;-4A;) > 0). 
Note that knowing the two independent solutions of (28) we are able in principle to 
find the third independent one. In general however it will be non-analytic at z = 0, 
unless incidentally n + fl, - A t  = k + f l ,  for some natural numbers n, k. 

Similarly the ansatz (30) allows us to find the solution with A = O  if 

A , = ( % )  and A o = i ( Z ) ,  

where the energy is given by (39b) and the compatibility condition reduces to a single 
equation 

(1 +R,)A = 0. (41 1 
We should stress that however the number of compatibility conditions increases 

with the dimension of the atomic Hilbert space we are still able to find a large class 
of exact solutions. In the discussed example the compatibility conditions span at least 
a two-dimensional manifold in the four-dimensional space of ( A ,  RI ,  fl,, A ) .  

Once more the existence of isolated exact solutions, apart from possible specific 
applications, may be helpful in understanding the general features of the non-integrable 
systems (QKAM theorem, regularity of the spectrum, etc). 

4. Autoionising atom 

Up to now we were able to generalise Juddian solutions to the case of an N-level 
system. A natural question arises whether it can be done also for infinitely dimensional 
atomic Hamiltonians. In this section we shall show that it is indeed possible. To this 
end we shall discuss a model of an autoionising atom, which was recently widely 
investigated in the literature (Lambropoulos and Zoller 1981, Agarwall et a1 1984, 
Rzazewski and Eberly 1981). The simplest model of the field induced autoionisation 
consists of an electron which may occupy a ground state, a bound excited state and 
a continuum of ionised states. The excited state is coupled to the continuum via a 
static configuration mixing potential. The ground state couples to the continuum and 
to the excited state through electric dipole transitions. There are two possible ionisation 
channels: direct and indirect (i.e. through the excited bound state). The probability 
amplitudes of the decay in these channels interfere and may in principle cancel each 
other. This happens in fact for the particular value of the coupling electric field. At 
the same time the electron undergoes coherent Rabi oscillations between the ground 
and the excited state. Such an effect termed ‘confluence of coherences’ (Rzqiewski 
and Eberly 1981) leads in practice to a population trappingt in the ground state 
(Coleman and Knight 1982) as well as to a remarkable narrowing of spectral lines. In 
the mathematical sense it corresponds to an appearance of an exact bound state of 
the full Hamiltonian. 

After a partial diagonalisation of a part of the system (excited state-continuum, 
see Fano 1961), the free atomic Hamiltonian consists of the ground state and a new 
continuum. The whole information about an autoionising resonance is contained then 

t Of course in realistic models trapping is never perfect (Aganval er a/ 1984). 
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in a new dipole coupling strength between the ground state and the new continuum. 
The Hamiltonian therefore has the form: 

LD 

H = a ’ a + l  -U [ d * ( w ) ~ w ) ( O ~ + d ( o ) ~ O ) ( w ~ ~ ( a t + n ) + ~  -U wIw) (wl  dw 

(42) 

IO), I w )  denote the atomic ground and continuum states (with energies 0, U ) .  The 
function 

1 +- 
( I - i q )  ( w - w o + i r l )  

d(w) = (43) 

determines w dependent transition matrix elements from (0) to Iw). r is here an 
autoioniaation width, oo is a frequency of the auotionising resonance (we assume that 
wo is not very different from a photon frequency w = 1). Finally q is a Fano asymmetry 
parameter, which measures a relative strength of the two mentioned ionisation channels, 
r, is a width of the background (typically rl >> r, Iwo - 11). The integrals over w are 
evaluated from --CO to 00, which means that we neglect the threshold effects. 

This approximation simplifies the model essentially, but is in fact well justified 
only in the case when the autoionising resonance is sufficiently far from the threshold. 
Unfortunately non-RwA terms involve multiphoton effects and thus are usually affected 
by the thresholds. 

The rotating wave approximation version of (43) has a constant of motion (excitation 
number) 

N = ata + lo ) (w l  dw. 5 
For each definite N one finds the population trapping in the ground state if the 
parameters d, r, wo, q fulfil some N dependent relation. Since this relation cannot 
be fulfilled for every N simultaneously, the effect of confluence of coherences vanishes 
or at least decreases significantly due to eventual fluctuations of N. 

The inclusion of the counter-rotating terms in (42) should destroy the confluence, 
since N is no more a constant and there are more possible channels of decay due to 
multiphoton processes. Typically, however, if wo is not far from resonance (wo=  1) 
and r, d << 1, the decay rate of the ground state population may be very small, i.e. of 
the order r( ( w0 - 1)/ U,,) or T2/ wo. 

Nevertheless, we cannot exclude the fact that, even in the case without RWA, for 
some arrangement of the atomic parameters the amplitudes of the different decay 
channels interfere destructively leading to a perfect or more probably approximate 
population trapping. Such an effect would have a slightly different physical meaning 
to the confluence discussed and should rather be termed confluence of many coherences. 
The question of whether this effect is present or not is of general importance in the 
theory of decaying systems. In fact this question motivated us to look for isolated 
exact eigenmodes of the Hamiltonian (42). 

The model (42) resembles in many respect a two-level system. To see this we shall 
eliminate the continuum using a method similar to the one used by Rzgzewski (1983) 
and Lewenstein er al (1984). The time dependent wavefunction of (42) has a form 
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where a and /3 are vectors in the Hilbert space of the field oscillator. The Schrodinger 
equation reads 

& ( t ) = - i ( a ' + u )  d(w)p(w,  t )  dw-ia taa( t )  (45a) 

(45b) 

1 
6 ( w,  t ) = - imp ( w ,  t ) - ia' up ( w, t ) - i d*( w ) ( a  ' + a )  a ( t ). 

Now we solve equation (45a) and eliminate p ( w ,  t )  in favour of an integrated amplitude 
p (  t )  = d(w ) p ( w ,  t )  dw. This leads to the following (non-Hermitian) equations for P 
and a :  

ci = - i ( a + + a ) p - i a ' a a  (46a) 

6 = - (T+ iwo+ia t a )a  - iKM(a '+a)a - K ( u ' + u ) ~ ~  - K ( u  - a ' ) a + K ( t ) .  (46b) 

The inhomogenity K (  t )  depends only on the initial value p ( w ,  t = 0) and tends to zero 
as t+m. We shall neglect it in the following. The constants are defined 

K = d2/4( 1 + q2)r (47) 

M = rq2 + i( - 2rq). (48) 

The eigensolutions of the homogeneous part of (46) have a simple time dependence 
a (  t )  = e-'€'a, p (  t )  = e-IE'P, where E is in general a complex number with a negative 
imaginary part. Vanishing of Im(E) would correspond to the 'confluence of many 
coherences'. Using the Bargmann representation for the field mode, we obtain 

E, = z(d/dz)a  + (z+d /dz )P  (49a) 

E p  = z(d/dz)p + [ w , - i r - i ~ ( z + d / d z ) ~ ] p  + K ( M  +i)za  + K ( M  -i)(d/dz)a.  (49b) 

Note the appearance of the qualitatively new term (z+d/dz) '  on the RHS of (49b). 
We must discuss the case q = CO separately (symmetric Fano resonance), since in this 
case 

K'O, KM + id2. (50)  

2w + ( wo - i r ) ,  A2+$d2. (51) 

In this limit the equations (49) are equivalent to the equations ( 2 )  if we substitute 

The analysis from § 2 can, therefore, be applied and we find eigenmodes of the form 

(pa) =exp(-tidz)( ( ,":)zn+. , ,+( i:)) 
with the energies 

( 5 3 )  
The compatibility conditions (20) and (21)  and others can, however, be fulfilled only 
for (wo-  ir) real. This implies either = 0 (which is exactly the pure two-level atom 
case) or wo = 0. In the latter case the equation for n = 1 takes the form: 

E = n - I&-' '  4 12r. 

(54) ad' -r2 - 1 = 0. 

At first sight the solutions with wo = 0 are not very interesting. What is physically 
interesting is the case of the resonances, i.e. wo = 2 k +  1, where k is natural. Equations 
(49) have, however, an alternative interpretation. We can interpret ( a  + a t  ) as a slowly 
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varying, fluctuating amplitude of the EM field. Equations (49) arise as a result of the 
RWA approximation with respect to the fast oscillations of the phase of the field (in 
this case 10) should have some negative energy, comparable with the phase oscillations 
frequency). In this language the case wo = 0 corresponds to the exact resonance and 
is indeed physically relevant. 

In the case q # cc we first analyse the analytical properties of the solutions of (49). 
Due to the appearance of the second derivatives in (496) the only singular point is 
z = 0. The requirement of analyticity of a, p and dp /dz  in z = 0 for all solutions of 
(49) gives 

E = n + l - i M  n = 0, 1, . . . . ( 5 5 )  

Note that the energy width Im(E) = -rq2 vanishes only for the somewhat peculiar 
case q = 0, and does not lead to any kind of unusual narrowing. We use once more 
the ansatz (30) and write 

This way we obtain the following compatibility conditions 

(iM -2-iF+ wO-iK)(iM - 1) = K(M -i )  for n = 1 (57) 
and 

(iM - 2  - iT+ wo - 3 i ~ ) ( i M  - l ) ( iM -3) = ~ ( 3 i M ’ - 6 M  -7i) for n = 2 .  (58) 

Each of the complex number equations implies in fact two real number relations 
between r, q, w,, and ad’. 

Up to now all the exact solutions, which we have discussed could be found under 
the corresponding analyticity condition which determined the energy. The slight 
modification of the ansatz (30) allows, however, for finding a class of exact solutions 
of (49) which do not fulfil the analyticity requirement. This is connected with the 
appearance of the term ( z  + d/dz)2 on the RHS of (496). The new solutions are obtained 
via the Gaussian transformation 

a = exp(&4z2) /3 = exp(fAz2) U. (59) 
A is chosen in such a way that the z2 term in (496) is cancelled. Using (59) we obtain 

Z-U + [ ~ ( l  + A )  +d/dz]u+Az2u = Eu (60~) 
d 

dz 

[ 1 - 2 i ~ (  1 + A)]z(d/dz)u + (wo-ir)V - iK(h + 1 ) ~  

+ K [ (  M + i)z + ( M  - i)Az]u + K (  M - i)(d/dz)u = Eu. (606) 
Transformation (59) does not change the analytic properties of the solutions in z = 0. 
A is defined as follows 

(61) A = i K ( A  + 1)*. 
Additionally normalisability of the solutions requires 1A1< 1. This inequality can be 
fulfilled by one of the two roots of (61). The exact solutions of (60) are then obtained 
substituting 
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The general formula for the energy reads 

E = n - 1 + w , - i T + i M - i ~ ( A  + 1)(2n - 1). (63) 

The cases n = 0 and n = 1 do not allow for non-trivial solutions of the corresponding 
compatibility conditions. The first non-trivial solution is obtained for n = 2 if 

(64) 1 + iM - 2iK ( A  + 1) = 0. 

From (64) we immediately obtain 

Im(E) = - r ( i + f q 2 )  

and the solution found does not show any extraordinary narrowing or population 
trapping effects. We cannot, however, exclude the possibility of these effects for the 
higher order solutions. 

5. Interaction with external fields 

We have been able to find a class of exact solutions for non-integrable quantum systems, 
using the simple ansatz (30) or (59) .  The essential point of our method was that after 
extracting an exponential factor from the wavefunction the resulting equations may 
have polynomial solutions. 

However, it remains unclear whether the solutions obtained do have some analogues 
in the semiclassical versions of the models discussed. There are, in principle, two 
stages of the semiclassical limit: 

(a) quantum atoms in an external time dependent field; 
(b) classical spins interacting with the classical oscillator (Milonni et a1 1983). 
We do not expect to obtain results in the case (b) (i.e. to find exact classical tori). 

The spins considered here are f or 1 and are rather far from the classical limit. 
We have been, however, able to construct the analogue of the ansatz (30) in case 

(a). The only non-trivial results were obtained for the case of an autoionising atom 
with q = CO. The time dependent Schradinger equation reads in this case: 

ci =if(t)P 

6 +(r+iwo)p = -if(t)a. (65) 
Once more we interpret these equations rather as the RWA equations with a slowly 
varying field amplitude f ( t ) .  In this case wo has the meaning of the detuning of the 
fast laser frequency from the transition frequency between the ground state and the 
Fano resonance. We consider 

f( t )  = A o +  A I  cos( t )  

i.e. the field amplitude is modulated with frequency 1. Obviously such a model has a 
direct experimental relevance. 

We were able to find a non-trivial solution of (65) using the ansatz 

a(?) =exp(-iEt+a, cos( t )+a2 sin(t))P,(cos(t), sin([)) 

p ( t )  =exp(- iEt+a,  cos( t )+a,  sin(t))R,(cos(t), sin(t)) 
(66) 

P, and R, are nth degree polynomials of the variables cos( t ) ,  sin( t ) .  An exponential 
pre-factor should enable us to use (66). In fact for n = 1 we find two pairs of the 
solutions of the form (66) provided a2 = 0, a ,  = *A,.  
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The compatibility conditions are 

= 0, ar2 = A: 

This corresponds to an autoionising atom on resonance. 
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